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There has been much recent attention given to the problems involved with the 
traditional approach to null hypothesis significance testing (NHST). Many have 
suggested that, perhaps, NHST should be abandoned altogether in favor of other 
bases for conclusions such as confidence intervals and effect size estimates (e.g., 
Schmidt, 1996). The purposes of this article are to (a) review the function that data 
analysis is supposed to serve in the social sciences, (b) examine the ways in which 
these functions are performed by NHST, (c) examine the case against NHST, and 
(d) evaluate interval-based estimation as an alternative to NHST. 

The topic of this article is null hypothesis signifi- 
cance testing (NHST; Cohen, 1994). By this we mean 
the process, common to the behavioral sciences, of 
rejecting or suspending judgment on a given null hy- 
pothesis based on a priori theoretical considerations 
and p values in an attempt to draw conclusions with 
respect to an alternative hypothesis. We should begin 
by saying that we agree with J. Cohen, G. Gigerenzer, 
D. Bakan, W. Rozeboom, and so on with respect to 
the notion that the logic of NHST is widely misun- 
derstood and that the conclusions drawn from such 
tests are often unfounded or at least exaggerated 
(Bakan, 1966; Cohen, 1990, 1994; Gigerenzer, 1993; 
Rozeboom, 1960). Nevertheless, we think it important 
that the extent and likely direction of such problems 
be carefully examined, because NHST, when used 
and interpreted properly, is useful for certain purposes 
and is only partially problematic for others. 

This article is divided into three parts. The first part 
is devoted to an examination of the role played by 
data analysis in the social sciences and the extent to 
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which NHST supports this role. The second part 
presents and critiques the case against NHST as an 
analytic tool. The third part investigates the viability 
of confidence intervals as an alternative to NHST. 

Purpose of  Data Analysis 

Perhaps the best way to begin is to consider the 
rationale of the typical research project in the social 
sciences and the role played by data analysis in the 
structure of the project. Every research project begins 
with a research question. Let us assume that the ques- 
tion has to do with a bivariate relationship that has 
never been examined empirically before. The first 
step in the project typically involves the generation of 
a theoretically based answer to the question, that is, a 
hypothesis. This hypothesis is often based on a com- 
bination of reason and previous empirical work in 
related areas and gives us evidence of a certain kind 
for a particular answer to the research question. This 
form of evidence is invaluable, but scientific tradition 
holds that corroboration, whether in the form of fal- 
sification or justification, is desirable (Lakatos, 1978; 
Popper, 1959; Serlin & Lapsley, 1985). If that cor- 
roboration is independent of the theoretical basis for 
the initial answer to the research question, then the 
corroboration is all the more impressive. This inde- 
pendent corroboration often takes the form of empiri- 
cal data and allows us to attack the research question 
from directions that are largely orthogonal to one an- 
other. 

The stronger the theoretical basis for the initial an- 
swer, the less reliance one need put on the data. For 
example, it is said that Albert Einstein had no interest 
in empirical tests of his theory of relativity. The 
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theory was so strong that any competently collected 
empirical evidence would support the theory. Thus, 
the empirical evidence was largely superfluous. 

On the other hand, we in the social sciences are 
rarely if ever justified in placing so much confidence 
in theoretical answers. Nevertheless, we can certainly 
think of  such hypotheses as lying on a continuum of 
supportability that ranges from weak to strong. If  mul- 
tiple, well-respected theoretical perspectives suggest 
the same hypothesis, then the theoretical support for 
that position is strong, and one is less reliant on the 
data. If, on the other hand, the theoretical support for 
a given position is weak, then the burden of  proof 
shifts to the data. 

Let us assume for the moment that the theoretical 
basis for a given hypothesis is of  average strength. Let 
us assume further that the experiment designed to 
provide corroboration for this hypothesis involves 
sound measures, reasonable procedures, and so on, 
and that data are collected within this design. The 
Neyman-Pearson framework on which much of  mod- 
em significance testing is based suggests that the de- 
sired outcome of data analysis is the adjustment of  our 
confidence in our hypotheses so that we can behave as 
if a given hypothesis is true or false until further evi- 
dence is amassed (Neyman & Pearson, 1928, 1933). 
But the question remains, how does one decide 
whether and the extent to which the data allow us to 
increase our confidence in the theoretically based an- 
swer to the research question? 

Let us consider for a moment what it is that we 
have to work with in the social sciences, particularly 
in comparison with the physical sciences. Largely be- 
cause of  the complexity of the variables studied in the 
social sciences, our theories are not powerful enough 
to generate point hypotheses. Physical scientists often 
scoff at our attempts to make general statements of the 
form " A  increases B "  without specifying the precise 
degree to which A increases B. The example of  32 
ft./s/s has been used in arguing that we need to focus 
on parameter estimation (e.g., regression weights) in- 
stead of saying things such as "Gravity makes things 
fail." Although we agree with this sentiment in prin- 
ciple, it strikes us as being a bit naive when applied to 
the study of  human behavior. The constraints placed 
on population values by theory are much weaker in 
the social sciences than they are in the physical sci- 
ences (Serlin & Lapsley, 1985). The example of  32 
ft./s/s is a more or less immutable law of  nature (on 
Earth of  course). It is always true, so it makes sense to 
apply a specific number to it. What happens if we 

change the question a bit? Suppose we wish to know 
the rate at which stock prices drop after interest rates 
are raised. In some cases, a given increase in interest 
rates produces a precipitous drop; in other cases the 
same increase produces little or no drop. We can com- 
pute an average and use this to draw some general 
conclusions, but it would be difficult to predict the 
drop rate in any given instance with a great deal of 
accuracy. The point is that the vagaries of  the stock 
market and other such phenomena are created by hu- 
man decisions and behavior. There is often too much 
complexity in such situations and perhaps too much 
variability in people for a theoretically based point 
parameter estimate to make much sense. We suggest 
that there are many situations in which we are better 
off sticking to more conservative, general predictions 
(and conclusions) such as A increases B. 

Regardless of  the form of the hypothesis, it must be 
exclusionary in order to make a contribution. This 
usually, though by no means necessarily, takes the 
form of a dichotomous prediction of  some kind. For 
example, the hypotheses " A  affects B "  and "The  
95% confidence interval will not contain zero" are 
dichotomous and exclusionary in the sense that A 
either affects B or does not, or the interval contains 
zero or not, and our hypotheses exclude the alterna- 
tive possibilities. Empirical evidence is then gathered 
and evaluated in terms of the extent to which we can 
adjust our confidence in the relevant hypotheses. In 
other words, we use empirical corroboration (or lack 
thereof) to adjust a degree of  rational belief (Keynes, 
1921). Where it is necessary to make a decision based 
on these levels of  confidence, we then behave as if the 
null were true or we behave as if the alternative were 
true. This behavior can take the form of  policy 
change, as is often the case in the applied social sci- 
ences, or it can represent one step in a series of steps 
associated with the test of  a theory (e.g., path analysis 
or measurement development). As always, it be- 
hooves us to keep in mind that the underlying basis 
for the decision is continuous. 

What  is required of  empirical  corroborat ion? 
There are at least three interrelated requirements for 
empirical corroboration: (a) objectivity, (b) exclusion 
of alternative hypotheses (e.g., a hypothesis of a re- 
lationship with a different sign or an alternative struc- 
tural model), and (c) exclusion of  alternative expla- 
nations (e.g., confounds or sampling error). It can be 
shown that proper experimental design followed by 
significance testing allows one to address all three of  
these requirements. No analysis procedure, including 
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significance testing, can meet these requirements per- 
fectly, but significance testing, for a variety of rea- 
sons, addresses these critical issues as well as or better 
than do the alternatives for many types of research 
questions. Before discussing these three requirements, 
however, let us take a moment to consider the reason 
that corroboration itself is critical. 

In the perfect world, perhaps every piece of re- 
search would be published somewhere. In a slightly 
less perfect world, any study with compelling theory 
and an adequate method would be published some- 
where. Given limited journal space, however, we are 
forced to choose from among submissions those ar- 
ticles that advance knowledge with the greatest effi- 
ciency. The article that provides a certain theoretical 
answer to a question, but also presents data that sug- 
gest a different answer, does advance knowledge. 
However, all else being equal, it does not advance 
knowledge as far as does the article with theoretical 
and empirical answers that are in agreement. The first 
type informs us that either the theory is wrong or the 
method is flawed. Thus, we are unable to adjust our 
confidence in any particular answer to the relevant 
research question. The second type, by contrast, al- 
lows us to increase our confidence in a given answer 
by virtue of the independent sources suggesting that 
answer. Given that corroboration is important, signifi- 
cance testing is useful because it gives us a mecha- 
nism for adjusting our confidence in certain answers. 
This can be shown in the context of the three require- 
ments for corroboration mentioned above. 

One of the most critical requirements of corrobo- 
ration is objectivity. The desire for objective verifica- 
tion can be traced at least as far back as Kant's (1781) 
Critique of Pure Reason and his references to inter- 
subjectivity, but the modern notions of objectivity and 
value freedom in the social sciences appear to stem 
from M. Weber (Miller, 1979). Empirical corrobora- 
tion should be objective in the sense that it should be 
as independent of the theoretically based answer to 
the research question as is possible (Dellow, 1970; 
Miller, 1987). In this way, it can complement entirely 
the theoretical evidence. While perfect objectivity 
may not be possible (Kuhn, 1962; Lakatos, 1978), it is 
important that we strive for separation of theoretical 
and empirical evidence. 

It is largely because of this need to separate theo- 
retical from empirical evidence that Bayesian statis- 
tics, with its reliance on arbitrary prior probabilities, 
has been used seldom to test scientific hypotheses 
(Putnam, 1981). Instead, we ask that theoretical an- 

swers, which are typically developed by the re- 
searcher that asked the research question and are 
therefore susceptible to intrasubjectivity, be separated 
as much as possible from those empirical answers. In 
proper significance testing with adequate levels of 
power, we compare observed results with a priori cut- 
offs to decide whether or not we will adjust our con- 
fidence in the hypothesis at hand. These cutoffs are 
somewhat arbitrary, but they are also intersubjective 
in the sense that they are conventional, and they are 
chosen before the data are examined. Thus, while it 
can be argued that the choice of cutoff is somewhat 
whimsical, it is largely the whim of others (as op- 
posed to the experimenter at hand) that determines the 
cutoff, and whatever impact the whim of the experi- 
menter has on the choice of cutoff, this impact takes 
place prior to examination of data. This allows one to 
meet the Popperian requirement that the conditions 
necessary for the drawing of certain conclusions are 
determined beforehand, ceteris paribus clauses not- 
withstanding (Serlin & Lapsley, 1985). Of course, ob- 
served probability values should be reported so that 
the reader can draw his or her own conclusions, but 
the conclusions of the experimenter are to be based on 
predetermined criteria. 

A second demand of empirical corroboration is that 
it allows us to rule out alternative hypotheses. If our 
prediction is that " A  has a positive effect on B,"  then 
it is desirable that our data allow us to assess the 
plausibility of alternative hypotheses such as " A  has 
a negative effect on B "  or " A  has a negligible effect 
on B."  In this way, we can show that our theory 
explains phenomena to a greater extent than do alter- 
natives (Lakatos, 1978). Significance testing allows 
the comparison of theoretical hypotheses to a null 
hypothesis. The term null has typically been used to 
represent the hypothesis that is to be nullified (Cohen, 
1994). This null hypothesis can be that there is no 
effect or no relationship, but this need not be the case. 
Regardless of the form of the null, significance testing 
involves a comparison of hypothetical distributions; 
specifically, it involves the comparison of the sam- 
piing distribution associated with the observed result 
to the distribution associated with the null. If  it is 
highly unlikely that the null distribution would have 
produced the observed result, and if this discrepancy 
is in the anticipated direction, then we adjust our con- 
fidences such that we tentatively rule out the null 
hypothesis (as well as distributions that are even less 
probable than the null) in favor of the theoretically 
based hypothesis. 
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A third demand of empirical corroboration is that it 
be subject to as few alternative explanations as pos- 
sible. Thus, we hope to be able to point to our data and 
claim not only that it is as one would expect given the 
theory, but also that its alignment with the theory is 
not due to extraneous factors. If  one accepts the ap- 
proach of  John Stuart Mill (1872), then there are three 
criteria for the inference of cause: temporal prece- 
dence, covariation, and the elimination of  alternative 
explanations for the covariation. The first two present 
relatively few problems. It is the problem of alterna- 
tive explanations that gives us the most trouble. For 
any given instance of  covariation, there are likely to 
be a multitude of possible alternative explanations 
such as the impact of  unmeasured variables, the 
choice of  sample, and so on. One potential alternative 
source of  covariation that has received a great deal of  
attention in recent years is sampling error. 1 The p 
value in NHST gives the probability that the data 
would have occurred given the truth of  the null hy- 
pothesis (Carver, 1978). In other words, p is the prob- 
ability that the departure of  the test result from null 
would have resulted from sampling error alone. 2 Al- 
though our cutoffs (.05 and .01 typically) are arbi- 
trary, they allow us to evaluate the extent to which 
sampling error is a viable alternative explanation. If  
our p value is less than the preset cutoff, then we can 
be reasonably confident (assuming all else is in order) 
that sampling error was not the reason that our test 
statistic differed from our null value. Thus, we have 
moved toward satisfying the third of  Mill 's criteria for 
inferring causality. We have effectively ruled out 
sampling error as an alternative explanation for the 
departure of  our test result from null. 

In summary, the purpose of  data analysis is to pro- 
vide corroboration (or fail to provide corroboration) 
of  theoretical answers to research questions. This cor- 
roboration is most convincing when it is intersubjec- 
tive and disconfirming of  alternative hypotheses and 
explanations. We clearly show that NHST does in fact 
provide a form of corroboration that contains each of 
these elements. 

Case  Aga ins t  N H S T  

The case against NHST has taken various forms. 
The most common attack of  recent years has involved 
pointing out the interpretational problems associated 
with NHST when conducted in the presence of meth- 
odological flaws (e.g., small samples; Schmidt, 1996) 
and experimenter ignorance (e.g., interpretation of  

conditional probabilities of empirical results as con- 
ditional probabilities of  hypotheses; Cohen, 1994). 
There can be no doubt that the presence of  method- 
ological flaws in a study limits the conclusions that 
can be drawn from NHST. Of course, such flaws limit 
the conclusions that can be drawn from any proce- 
dure, so we see no point in holding NHST or any 
other procedure accountable for the shortcomings of 
the data to which they are applied. 

On the other hand, we would like to address what 
we consider to be the most glaring problems associ- 
ated with the criticisms involving experimenter igno- 
rance. The criticisms are that (a) many experimenters 
commit the error of  interpreting the conditional prob- 
ability of  the empirical result, P(DI/-/), also known as 
the p value, as the conditional probability of  the hy- 
pothesis, P(HID); (b) the probabilistic nature of  
NHST creates logical problems; and (c) NHST is mis- 
leading in that it focuses on control of  Type I errors 
when the probability of  such errors is zero. 

Interpretation of p 

The p value gives the probability that the observed 
empirical result would have occurred given a certain 
hypothetical distribution. We agree completely with 
Cohen (1994), Gigerenzer (1993), Rozeboom (1960), 
and others in their observation that many researchers 
tend to misinterpret the p value as the probability of  a 
hypothesis given the data. However, this is the fault of 
those who are doing the interpreting, not the tools that 
they choose. Also, it is important to recognize that 
there are many situations in which interpretation of  a 
small value of  P(DIHo) as indicating a small value of  
P(HolD ) can make sound, practical sense. To show 
this, let us first examine Cohen's  (1994) excellent 
example from clinical/abnormal psychology. It goes 
like this. 

The base rate for schizophrenia in adults is roughly 
2%. Suppose a given test will identify 95% of people 

i The term sampling error is used here to represent any 
difference between statistics based on samples drawn from 
the same population (cf. Hunter & Schmidt, 1990). 

2 While no one argues with the previous sentence, the 
present sentence may rankle for some. It seems to us, how- 
ever, that a discussion of the probability of departure from 
null implies that the null is taken to be true, and such a 
discussion with such an implication is equivalent to a dis- 
cussion of the probability of a result given the truth of the 
null. 
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with schizophrenia as being schizophrenic and will 
identify 97% of "normal" individuals (in the clinical 
sense) as normals. The data or empirical outcomes, in 
this case, are the results of the test for schizophrenia. 
The hypotheses correspond to the true nature of the 
testee. So, P(normal test resultlnormal testee) = .97, 
while P (schizophrenic test resultlschizophrenic 
testee) = .95. Stated formally, P(DolHo) = .97 and 
P(DIIHI) = .95, while P(DIlHo) = .03 and P(DolH1) 
= .05. We also have the prior probability or base rate 
of occurrence for the null hypothesis, P(Ho) = .98. 
What we want to know, of course, is the probability 
that a given person truly is schizophrenic in light of 
the test result. Formally, we want P(HolD1) or 
P(HIIDo). The Bayesian equation for P(HoID1) is 3 

P(/-/o) * e(Dll/-/o) 
P(HolD1) = P(Ho ) • P(DIlHo) + P ( H  1) • P(DolH~)" 

Using this equation, Cohen (1994) showed that 
P(HolD1) = .607. Substantively, if the test says that a 
person is schizophrenic, then the person will actually 
turn out to be schizophrenic only 39% of the time. Of 
the positive test results, 61% are wrong! 

The point that we wish to make, however, is that 
this result is problematic from only one perspective, 
namely, that of the person who wants to find schizo- 
phrenics, Consider another perspective: that of a per- 
son in charge of hiring police officers. Such a person 
would, in most cases, try to avoid hiring people whose 
schizophrenia (or any other attribute) would be de- 
bilitating with respect to job performance. In other 
words, the employer's purpose is to make sure that a 
given applicant is, in fact, normal in the clinical sense 
of the word. The test from Cohen's (1994) example 
identifies 95 of every 100 people as normal, of whom 
94.9 really are normal. Therefore, the conditional ac- 
curacy of a normal result from the test (i.e., P(HolDo)) 
is 94.9/95, or .999! Only 1 out of every 1,000 people 
with a normal result would actually suffer from 
schizophrenia. 

So, is this test useful to an employer? Without the 
test, the employer would hire 20 people with schizo- 
phrenia in every 1,000 hiring decisions. With the test, 
the employer would get 1 person with schizophrenia 
in every 1,000 hiring decisions. Thus, the odds of 
hiring a person with schizophrenia without the test are 
greater by a factor of 20! The point is that, not sur- 
prisingly, the context largely determines the problems 
caused by interpreting the results of NHST in a certain 
way. Of course, we are only echoing statements made 

almost 40 years ago. Rozeboom (1960) pointed out 
that the probabilities associated with our hypotheses 
are not the only considerations when deciding wheth- 
er or not to accept or reject hypotheses. We must also 
consider the "utilities of the various decision out- 
comes" (Rozeboom, 1960, p. 423). For certain types 
of decisions, a procedure that is prone to mistakes of 
one kind can be devastating because of the utilities 
associated with those mistakes, whereas a different 
procedure that is prone to different kinds of mistakes 
can be quite useful because the mistakes that it makes 
result in "missing on the safe side." 

Syllogistic Reasoning and 
Probabilistic Statements 

It has been suggested that the logic of NHST is, if 
you will, illogical. Consider the issue as presented by 
Cohen (1994), who set up various syllogisms repre- 
senting different ways of viewing the logic of hypoth- 
esis testing. Cohen (1994) pointed out that while the 
rule of Modus Tollens can be universally applied to 
premises of the form " I f  A then B, not B," resulting 
in the conclusion "Not A,"  it cannot be universally 
applied to the premises, " I f  A then probably B, not 
B"  to conclude "Probably not A."  This sequence of 
statements is meant as an analog for the statements 
that are implicit in NHST. If the null were true, then 
a sample taken from the population associated with 
the null would probably produce a statistic within a 
certain range (i.e., If A, then probably B). The statistic 
from our sample is not within that range (i.e., not B). 
Ergo, a population associated with the null value 
probably did not produce our sample (i.e., probably 
not A). Cohen then gave an intriguing example that 
highlights one of the problems that can arise as a 
result of applying the Modus Tollens to probabilistic 
statements. The example is as follows: 

If a person is an American, then that person is probably 
not a member of Congress. 
This person is a member of Congress, therefore, 
This person is probably not an American. 

In this case, the two premises are perfectly true, and 
yet Modus Tollens fails to lead us to a reasonable 
conclusion. 

As we stated above, this example is intriguing, but 

3 Conditional probabilities of other hypotheses can be 
computed using similar equations. 
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it is limited in its generalizability for two reasons. It is 
important that these reasons be understood so that the 
situations in which the logic of  NHST is and is not 
questionable can be identified. First, the consequent 
of  the first premise, "That  person is probably not a 
member of  Congress," is true in and of  itself. Any 
given person is probably not a member of  Congress. 
As a result, one could use almost anything as the 
antecedent of  this premise without damaging the ac- 
curacy of  the premise. " I f  one out of every three cows 
is blue, then this person is probably not a member of  
Congress" is just as valid as the first premise from 
Cohen's  (1994) example. We explain the importance 
of  this feature of  the example momentarily. 

The second limiting aspect of  the first premise is 
that while the first premise is true as it stands, it is also 
the case that being an American is a necessary con- 
dition of  being a member of  Congress. In other words, 
while it is true that " I f  a person is an American, then 
that person is probably not a member of  Congress," it 
is also true if a person is a member of  Congress, then 
that person has to be an American. It is because of  
these two aspects of the particular example chosen 
that the Modus Tollens breaks down. Consider a dif- 
ferent example, one that is more representative of  psy- 
chology: 

If Sample A were from some specified population of 
"normals," then Sample A probably would not be 50% 
schizophrenic. 
Sample A comprises 50% schizophrenic individuals; 
therefore, 
Sample A is probably not from the "normal" population 

In this example, the consequent of  the first premise 
still stands by itself, that is, a given sample of  people 
probably will not comprise 50% people with schizo- 
phrenia. However, this statement is particularly true if 
the antecedent holds; whereas, in the Cohen example, 
the consequent is particularly true if the antecedent 
does not hold. To clarify this, consider a third ex- 
ample: 

ff the planets revolve around the sun, then Sample A 
probably would not be 50% schizophrenic. 
Sample A comprises 50% schizophrenic individuals; 
therefore 
The planets probably do not revolve around the sun. 

As with Cohen's  example, the conclusion here is 
false. Modus Tollens fails to lead to a reasonable con- 
clusion because the truth of  the antecedent of  the first 
premise is unrelated to the truth of  its consequent. So, 

while it is the case that Modus ToUens cannot be 
applied to probabilistic premises when the truth of  the 
antecedent of the first premise is unrelated or nega- 
tively related to the truth of the consequent of the 
premise, it is approximately correct for and can be 
applied to arguments, typical of  psychology, in which 
the truth of  the two components of  the first premise 
are positively related. In other words, the typical ap- 
proach to hypothesis testing does not violate the rel- 
evant rule of  syllogistic reasoning to any great degree. 
Cohen's  (1994) example was useful in that it showed 
why application of  Modus Tollens to probabilistic 
statements can be problematic, but it should not be 
taken to mean that this rule of  syllogistic reasoning is 
useless for psychology. 

Interpretation of Error Rates 

This brings us to the issue of interpretation of  Type 
I and Type II error rates, usually represented as et and 
13, respectively. There seems to be some confusion as 
to the meaning of  these values. For example, Schmidt 
(1996) stated repeatedly that the Type I error rate, ~x, 
is zero, as opposed to .05 or .01, or whatever the 
predetermined cutoff value is. Cohen (1994) made 
similar statements. Their reasoning is that because the 
hypothesis of  no effect is never precisely true, it is not 
possible to falsely reject the null hypothesis (see 
Frick, 1995, for an alternative position). In other 
words, the null is always false, so rejecting the null 
cannot be an error. This may be true, but it has noth- 
ing to do with the Type I error rate. 

The Type I error rate, or, is the probability that the 
null would be rejected if the null were true. Note that 
there is no suggestion here that the null is or is not 
true. The subjunctive were is used instead of  is to 
denote the conditional nature of  this probability. The 
Type I error rate is the probability that the hypotheti- 
cal null distribution would produce an observed value 
with a certain extremeness. If  this value is set at .05, 
then in order for the observed test result to be con- 
sidered statistically significant, it would have to be a 
value so extreme that it (or a value more extreme) 
would occur 5% of the time or less if we repeatedly 
sampled from a null distribution. The .05 value is the 
Type I error rate, regardless of whether or not the null 
is true. Even if we know the null to be false, the Type 
I error rate is still .05 because it has to do with a 
hypothetical distribution, not the actual sampling dis- 
tribution of the test statistic. Alpha is not the prob- 
ability of  making a Type I error. It is what the prob- 
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ability of making a Type I error would be if the null 
were true. One can, perhaps, argue that the term Type 
I error rate is misleading. A better term might be 
conditional Type I error rate. Regardless of the term 
used, however, the value that we choose for ct is the 
Type I error rate regardless of the truth of the null• 

This is not to say that the Type I error rate is the 
only error rate on which we should focus or that this 
error rate alone allows one to determine the impor- 
tance of our empirical results. The Type II error rate, 
which is also a conditional error rate, is at least as 
important as the Type I error rate. Furthermore, as is 
well known, for large sample sizes, the null can be 
rejected regardless (almost) of the effect size and re- 
gardless of the Type I error rate that is chosen. Thus, 
the Type I error rate is only one of many consider- 
ations in a test of significance. Nevertheless, it is im- 
portant that the meaning of these values and their 
conditional nature be understood so that further mis- 
interpretation does not occur. 

Another issue with respect to interpretation of error 
rates has to do with the "null versus nil hypothesis" 
distinction. As pointed out by Cohen (1994), the term 
null hypothesis receives its name by virtue of the fact 
that it is the hypothesis to be nullified• Thus, the value 
associated with this hypothesis need not be zero. It 
can be any value against which we wish to compare 
the empirical result. The nil hypothesis, according to 
Cohen (1994), would be a null hypothesis for which 
the value to be nullified is precisely zero. The point 
that Cohen (1994), Thompson (1992), and others have 
tried to make is that because the nil hypothesis is 
always false, there is no glory in rejecting it. It is a 
"straw man" that is set up for the purpose of being 
knocked down. Their point is well taken (although 
Frick, 1995, and others have argued that there are 
situations in which the nil can be precisely true), but 
some authors have taken it further than it can go. For 
example, Schmidt (1996) used the position that the nil 
is always false to suggest that all research that has 
compared a research hypothesis with the nil hypoth- 
esis is worthless (except as fodder for meta-analyses). 
While it is certainly true that the social sciences 
should expand their methodological thinking to in- 
clude null hypotheses other than the nil hypothesis, it 
is not true that the use of the nil renders previous 
research worthless. For example, suppose that there 
are theoretical reasons for positing a positive relation- 
ship between two variables. In an attempt to investi- 
gate this relationship, data from 100 subjects are col- 
lected, and the correlation is found to be .40• This 

value can be converted into a t score (4.32), which is 
greater than any cutoff value that is likely to be rel- 
evant for our choices of test and significance level. 
Thus, it is highly unlikely that this result would have 
occurred if the nil hypothesis were true. We would, 
therefore, proceed as if the nil were false and the 
research hypothesis were true pending further infor- 
mation (cf. Neyman & Pearson, 1928, 1933)• 

However, as pointed out by others, the nil is some- 
thing of a straw man. It allows one to address the 
question, "How likely is it that a population with a 
correlation of zero would produce a given sample- 
based correlation?" It would be more interesting to 
ask whether or not it is likely that a population with a 
trivial correlation would produce a given sample- 
based correlation. While it is true that one person's 
whopping effect is another person's trivium, let us 
assume for the moment that any variable that explains 
less than 1% of the variance in another variable ex- 
plains only a trivial amount of variance. Instead of 
using the nil hypothesis, we might use a null value of 
.10 (which is the square root of .01). Thus, we would 
compare our observed value of .40 with the null value 
• 10 instead of the nil value• This test requires that we 
convert both our observed correlation and our null 
value to z scores with the Fisher r to z transformation, 
which yields z values of 0•4236 and 0.1003. We then 
compute a z value representing the difference between 
these values. For the present example, this z value is 
3.185, which is also greater than any cutoff value that 
is likely to be relevant for our choices of test and 
significance level. Thus, the outcome is the same for 
this test as it was for the test involving the nil hypoth- 
esis: We would proceed as if the research hypothesis 
were true pending further information. This is not to 
say that it makes no difference which value we choose 
as the null value• Instead, the point that we wish to 
make is that it is nonsensical to suggest that the use of 
zero as the null value has produced nothing but worth- 
less research. The point nil can be thought of as the 
midpoint of some interval that (a) includes all values 
that might be considered trivial and (b) is small 
enough that calculations using the point nil give a 
good approximation of calculations based on other 
values within the interval. This interval is analogous 
to the "good-enough belt" described by Serlin and 
Lapsley (1985). Of course, the explicit use of such a 
belt would be preferable to simply assuming that it 
provides support for a given hypothesis. Nevertheless, 
our point is that the conclusions drawn from the vast 
majority of research that has focused on the nil would 
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have been very much the same even if an alternative 
null value had been used. 

Additionally, while it may be the case that the nil 
hypothesis is always false and that Type I errors with 
respect to nil hypotheses never occur, the same can be 
said of  any hypothesis relating to a specific point in a 
continuum (Frick, 1995). This fact does not allow one 
to conclude that a point null hypothesis is a straw 
man. Rejection of  a given null hypothesis implies the 
rejection not only of  the particular null value in ques- 
tion, but also of  all of  the values in the end of the 
distribution that is opposite to the end in which the 
observed value resides. For example, if an observed 
correlation of  .40 is compared with the null value of  
zero, and NHST leads to the rejection of  the hypoth- 
esis p = 0, then it also leads to the rejection of  the 
hypotheses (p = -.01, p = -.02, p = - .10,  and so 
forth on to p = -1.  If the null were instead p = .10, 
then rejection of  this hypothesis would also entail 
rejection of  hypotheses, relating to .09, .08, and so 
forth, on to -1.  Similar reasoning can be applied to 
differences between means, or whatever the param- 
eter of  interest. Our point is that while the p value 
specifically applies to a hypothetical distribution 
based on the null value only, and while this distribu- 
tion may never, in fact, exist, it cannot be claimed that 
distributions relating to all values in the opposite di- 
rection from the observed result do not exist. Since 
these more extreme distributions would yield even 
smaller p values, we are even more justified in reject- 
ing hypotheses relating to the null values associated 
with these distributions than we are in rejecting hy- 
potheses relating to the null value of direct interest. 

This argument is more easily understood in the con- 
text of  directional hypothesis tests. 4 If  a theory sug- 
gests a negative correlation between two variables, 
then one might use a significance test in which only 
the negative end of  the distribution is targeted. If  the 
relevant statistic falls within the rejection region, then 
the hypothesis associated with the null value is re- 
jected (tentatively). By implication, all of the distri- 
butions associated with positive values are also re- 
jected. Indeed, as Meehl (1967) pointed out, there is 
no reason to suggest that all hypotheses associated 
with a given half of  a distribution are always false. 
Thus, this significance test is not trivial. The theory 
places certain constraints on the parameter of  interest, 
that is, positive or negative, and the significance test 
allows the ruling out of the hypotheses associated 
with the opposite direction. 

The issue is more complicated for nondirectional 

tests. Because such tests contain some rejection re- 
gion in both tails of  the distribution, it has been ar- 
gued that an empirical result in one end of  the distri- 
bution does not imply rejection of  all values in the 
opposite end of  the distribution. To shed some light 
on this topic, let us first observe that nondirectional 
tests occur in two contexts. In the first, the theory is so 
weak that it cannot suggest a direction or pattern. 
Thus, there is no reason to prefer one "direct ion" 
over the other, and a nondirectional hypothesis is 
tested. In the second context, the theory being tested 
does suggest a particular pattern of  relationships, 
mean differences, and so on, but the analysis tech- 
nique does not allow for precise consideration of  these 
patterns. It is this context to which our arguments 
speak. For example, the null hypothesis in a one way 
analysis of  variance (ANOVA) has to do with equality 
of group means. This null can be rejected if any form 
of departure from equality occurs. Thus, an ANOVA 
represents a nondirectional test, even if the theory in 
question suggests a particular pattern. It is for this 
reason that tests subsequent to the ANOVA are per- 
formed. The NHST associated with the omnibus 
A N O V A  addresses only the issue of  equality of  
means. Thus, it represents a preliminary step in the 
process of  assessing the degree to which data and 
theory are consistent with one another. The tests sub- 
sequent to the ANOVA, which often also include 
NHSTs, address the more specific questions concern- 
ing the pattern of  the results. Within the context of 
these more specific tests, rejection of  the null implies 
rejection of  all distributions that are at least as un- 
likely as the null distribution. 

Finally, it should be noted that even if Type I errors 
for point null hypotheses were technically impossible, 
it is entirely possible to commit errors that are similar, 
if not identical to, Type I errors by concluding that 
trivial departures from the null value justify the con- 
clusion that the null hypothesis should be spumed and 
the alternative hypothesis adopted. For example, con- 
sider the relationship between extroversion and job 
performance for sales representatives as reported by 
Barrick and Mount (1991). The meta-analysis-based 
correlation between these two variables uncorrected 

4 Our purpose is not to endorse or recommend against 
directional hypothesis tests (see Harris, 1994, for a discus- 
sion of the problems associated with one-tailed tests). We 
mention one-tailed tests only to clarify our point with re- 
spect to rejection of sets of hypotheses. 
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for artifacts was .09. Given the sample size (2,316), 
statistical significance, namely, Ho: p = 0, was not an 
issue. In other words, the nil hypothesis is rejected 
ipso facto. However, a decision that is, for practical 
purposes, a Type I error is still possible. I f  one con- 
cludes from this empirical result that extroversion ex- 
plains a meaningful amount of  variance in job perfor- 
mance in spite of  the fact that less than 1% appears to 
be explained, and if a correlation of  .10 or less is 
considered trivial, then this interpretation could easily 
be construed as an error of  some sort. In fact, the 
authors did conclude that extroversion was a valid 
predictor of  job performance for sales representatives. 
Thus, even in those cases in which a Type I error in 
the strict sense is, for all intents and purposes, impos- 
sible, it is possible to evaluate conclusions with re- 
spect to Type I errors, vis ~ vis alternative null hy- 
potheses. 

W h a t  i f  S igni f icance  Tests  Are  A b a n d o n e d ?  

Various authors (e.g., Cohen, 1994; Schmidt, 1996) 
have argued that NHST should be outlawed and re- 
placed by parameter estimation procedures such as 
confidence intervals (CIs). ~ This argument, however, 
becomes moot with a clear understanding of  alpha. 
Suppose, for example, that we wish to compare a 
sample, with a mean of  1,180 and a standard error of  
the mean of  8.17, to a population with a mean of  
1,110. In a test of  significance, alpha is the probability 
that the population with the mean of  the 1,110 would 
have produced a sample with a mean of  such a size 
that we would reject the null hypothesis. If  one dis- 
cards tests of  significance, alpha is effectively equal 
to zero because no null hypothesis will ever be re- 
jected. 

The width of  a CI is determined by 1 - et (multi- 
plied by 100 to express it as a percentage). For the 
example above, this alpha value would be the prob- 
ability that a population with a mean of  1,180 would 
produce a sample with a mean of  a certain magnitude 
(+t~ * SE). In both cases, alpha partially determines 
which values will fall into one class versus another. 
For the significance test, alpha partially determines 
which values are associated with a decision to con- 
clude that the mean of  the population from which the 
sample came is different from 1,110. For the CI, alpha 
partially determines which values represent means of  
samples that are likely, or at least not unlikely, to have 
been produced by a population with a mean of  1,180. 
In using a confidence interval, we reject, implicitly or 

explicitly, any hypotheses associated with values that 
lie outside the interval. It should be noted that this is 
true regardless of  the way that the interval is de- 
scribed. Even if one 's  focus is on the sampling error- 
based band about a point parameter estimate (as op- 
posed to focusing on the values that do not lie within 
the band), the boundaries of  this band are defined by 
the values that lie outside it. The presentation of  such 
a band necessarily implies the exclusion of  certain 
values. Sometimes, this exclusion will be in error, and 
the probability of  such an error is called alpha. 

Consider what happens if alpha is set to zero for 
confidence intervals, as it would be for NHST if 
NHST were abolished. An alpha value of  zero sug- 
gests a 100% CI, which would range from minus in- 
finity to plus infinity (from -1  to 1 for correlations). 
Such CIs, although perfect in the sense of  always 
being correct, are of  no use. To make the CI useful in 
any sense, we must accept an imperfect CI. 

Historically, with the concept of  probable error, 
early statisticians used what were basically 50% CIs. 
That practice was abandoned in favor of  more con- 
servative CIs for which failure of  the interval to con- 
tain the population parameter was considerably less 
likely than 50%. Fundamentally, there is no way to 
avoid making a decision regarding alpha, whether that 
decision involves NHST or CIs. If  we set alpha at zero 
for NHST (refuse to do them), we should also do so 
for CIs, which shows the underlying fallacy of  the 
replacement of  NHST with CIs. As with significance 
tests, there is a probability of  being wrong when form- 
ing a CI, and that probability is called alpha. 

Likewise, if tests of  significance are abolished, 
power, the probability of  rejecting the null hypothesis 
when it is false, is zero. Power, like CIs, depends on 
alpha; without alpha, beta is 100% and power is 1 - [3. 
Thus, power equals zero. When these points are added 
to the fact that CIs and significance tests are based on 
precisely the same information (i.e., parameter esti- 
mates and standard error values), the only reasonable 
conclusion is that CIs and power estimation cannot be 
done instead of  tests of  significance but that instead 
they should be done in conjunction with significance 
tests. 

There are many statistics---such as goodness-of-fit in- 
dices, tests of normality, and tests of randomness--for 
which confidence intervals are not available (Nantrella, 
1972). 
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Discussion 

In conclusion, we would like to reiterate our agree- 
ment with many of the positions taken by the authors 
listed in the first paragraph of this article. Significance 
testing is abused. Application of Modus Tollens and 
other rules of syllogistic reasoning to probabilistic 
statements can lead to problems. Interpretation of p 
values as the probability of the truth of the null hy- 
pothesis given the data is inappropriate. CIs and 
power should be reported. The points that we wish to 
make here are these. First, the purpose of data analysis 
is to allow us to examine the extent to which the data 
provide corroboration for the theory-based answer to 
the research question. This corroboration typically 
comes in the form of disconfirmation of alternative 
hypotheses and explanations (Popper, 1959). NHST 
gives us an objective mechanism by which we can 
rule out hypotheses and explanations relating to the 
null. Second, the arguments against the use of NHST 
are built on faulty premises, misleading examples, and 
misunderstanding of certain critical concepts. We at- 
tempt to show that there are many cases in which 
drawing conclusions about hypotheses based on p val- 
ues is perfectly reasonable. Indeed, a probabilistic 
version of the Modus Tollens rule of syllogistic rea- 
soning can be applied to many examples typical of 
psychology to produce approximate probabilistic 
statements about hypotheses. Furthermore, a firm un- 
derstanding of the nature of error rates gives insight 
into the fact that p values are useful regardless of the 
actual state of reality. Finally, the position that NHST 
should be replaced by CIs is nonsensical. The two are 
based on exactly the same information, and both in- 
volve an exclusionary decision of some kind. To criti- 
cize and revile one while advocating the other is nei- 
ther consistent nor rational. 

Future of  Data Analysis  

This is not to say that NHST is appropriate for 
every situation. It is not. But neither are the altema- 
fives appropriate for every situation, and neither are 
they to be applied without judgment. Various sugges- 
tions have been made with respect to methods that are 
deemed superior to NHST such as CIs, effect size 
estimations, and meta-analysis. Each of these methods 
certainly has its advantages, but they are no less prone 
to abuse than any other method, and none of them is 
appropriate for every situation. For example, meta- 
analysis is not useful for many research questions that 
have not been addressed empirically in previous stud- 

ies, and like NHST, it has assumptions that should be 
considered when interpreting results. Effect size esti- 
mation must also be approached with caution, as an 
effect size estimate is typically the amount of variance 
in one variable accounted for by another in the sample 
at hand. The problem is that effect size estimates are 
dependent on the variabilities of the particular mea- 
sures and experimental manipulations used in the 
sample (Cortina and DeShon, 1997; Dooling and 
Danks, 1975), therefore, the use of different manipu- 
lations or measures may result in different effect size 
estimates. Effect size estimates are helpful but must 
be interpreted with caution. 

Finally, many have recommended CIs as a replace- 
ment for NHST. However, confidence intervals and 
NHST calculations are based on precisely the same 
information. For example, a 95% CI about the differ- 
ence between two means and a significance test at .05 
both use the difference between sample means, the 
value from the t distribution corresponding to the de- 
grees of freedom involved, the sample variances, and 
the sample sizes. The two methods simply present this 
information in different ways. The result is an empha- 
sis on parameter estimation versus an emphasis on 
sampling error, with each emphasis having its advan- 
tages and disadvantages. 

Also, there is no reason to believe that the use of 
CIs instead of significance tests will change anything. 
We are all familiar with studies in which CIs are 
reported, and these studies often point out whether or 
not the interval includes zero. That is a significance 
test. It has been argued that this is an inappropriate 
application of CIs and should be done away with 
(Schmidt, 1996), thus leaving only the parameter es- 
timate and the width of the band around it. Unfortu- 
nately, no alternatives are offered for objectively de- 
termining the extent to which the data corroborate the 
theoretical predictions of the study. Moreover, many 
of those who would replace significance tests with CIs 
see no need for alternatives because they believe that 
no conclusions can be drawn from the single sample 
study (Schmidt, 1996). For those of us who believe 
that there is unique merit in the single sample study, 
the lack of criteria for determining the agreement be- 
tween theory and data is profoundly disturbing. This 
lack leaves a yawning gap in the system used to evalu- 
ate the merit of most manuscripts submitted for pub- 
lication. 

In any case, the sorts of problems that occur with 
NHST, CIs, and other statistical procedures are not 
inherent in these procedures but instead stem from 
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ignorance of  proper applications of  these techniques. 
By replacing NHST with CIs, we actually do harm by 
giving the illusion that the problems are solved when, 
in fact, they have not even been addressed. 

It is also worth noting that problems associated 
with the identification of  appropriate decision criteria 
are likely to persist simply because of  the types of  
questions that we ask. In the behavioral sciences, we 
have traditionally asked yes-no questions, Does A 
affect B? Does goal setting affect performance? Rea- 
son and previous work give us prior bases for expect- 
ing certain answers to these questions. If  significance 
tests contribute support for these expectations, then 
we have attacked the problem, and received corrobo- 
ration, from both the theoretical and empirical sides. 
Unfortunately, our theories are rarely precise enough 
to allow for predictions of  parameter values. Thus, 
only empirical support for a given parameter value is 
possible. On the other hand, if we keep our questions 
more general, more conservative, then the possibility 
of  having both theoretical and empirical support ex- 
ists. As always, we must apply the same care and 
thought to the interpretation of  empirical evidence 
that we apply to theoretical evidence. 

Finally, let us not forget that judgment is required 
in every analysis of  scientific information. The abuses 
of  NHST have come about largely because of  a lack 
of  judgment or education with respect to those using 
the procedure. The cure lies in improving education 
and, consequently, judgment, not in abolishing the 
method. Mindless application of  any procedure causes 
problems, and discarding a procedure because it has 
been misapplied ensures the proverbial loss of  both 
baby and bathwater. 
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