Install any you don’t have
# A tibble: 13,588 x 18
Key Adv Date Status Name Lat Lon Wind Gust
<chr> <dbl> <dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 EP192… 1.00 2017-10-04 09:00:00 Tropic… Ramon 14.3 - 96.0 40.0 50.0
2 AL162… 1.00 2017-10-04 15:00:00 Tropic… Sixt… 12.2 - 81.9 30.0 40.0
3 EP192… 2.00 2017-10-04 15:00:00 Tropic… Ramon 14.9 - 96.5 40.0 50.0
4 AL162… 2.00 2017-10-04 21:00:00 Tropic… Sixt… 12.5 - 82.5 30.0 40.0
5 EP192… 3.00 2017-10-04 21:00:00 Tropic… Ramon 15.2 - 97.7 40.0 50.0
6 AL162… 3.00 2017-10-05 03:00:00 Tropic… Sixt… 12.8 - 82.7 30.0 40.0
7 EP192… 4.00 2017-10-05 03:00:00 Tropic… Ramon 14.8 -102 30.0 40.0
8 AL162… 4.00 2017-10-05 09:00:00 Tropic… Sixt… 13.3 - 83.3 30.0 40.0
9 EP192… 5.00 2017-10-05 09:00:00 Remnan… Ramon 15.0 -102 20.0 30.0
10 AL162… 5.00 2017-10-05 15:00:00 Tropic… Nate 14.3 - 83.7 35.0 45.0
# ... with 13,578 more rows, and 9 more variables: Pressure <dbl>,
# PosAcc <dbl>, FwdDir <dbl>, FwdSpeed <dbl>, Eye <dbl>, SeasNE <dbl>,
# SeasSE <dbl>, SeasSW <dbl>, SeasNW <dbl>
ungroup()
is only needed if there is no summarize()
[1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[36] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
[71] 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
[1] 4 3 2 1
Hint: you might need a nice round function…
adv_decadal_monthly_max_gust <- adv %>%
group_by(Decade, Year, Month) %>%
summarize(Max_Gust = max(Gust, na.rm=TRUE)) %>%
group_by(Decade, Month) %>%
summarize(Mean_Max_Gust = mean(Max_Gust))
#plot it!
ggplot(adv_decadal_monthly_max_gust, mapping = aes(x = Month,
y = Mean_Max_Gust,
color = factor(Decade))) +
geom_line()