\[\Large \boldsymbol{Y_i} = \boldsymbol{\beta X_i} + \boldsymbol{\epsilon} \]
\[\Large \epsilon \sim \mathcal{N}(0,\sigma^{2})\]
\[\Large \boldsymbol{\hat{Y}_{i}} = \boldsymbol{\beta X_i} \]
\[\Large Y_i \sim \mathcal{N}(\hat{Y_i},\sigma^{2})\]
\[\Large \boldsymbol{\eta_{i}} = \boldsymbol{\beta X_i} \]
\[\Large \hat{Y_i} = \eta_{i}\] Identity Link Function
\[\Large Y_i \sim \mathcal{N}(\hat{Y_i},\sigma^{2})\]
\[\Large \boldsymbol{\eta_{i}} = \boldsymbol{\beta X_i} \]
\[\Large Log(\hat{Y_i}) = \eta_{i}\] Log Link Function
\[\Large Y_i \sim \mathcal{N}(\hat{Y_i},\sigma^{2})\]
Error Generating Proces | Common Use | Typical Data Generating Process Shape |
---|---|---|
Log-Linear | Error accumulates additively, and then is exponentiated | Exponential |
Poisson | Count data | Exponential |
Binomial | Frequency, probability data | Logistic |
Gamma | Waiting times | Inverse or exponential |
Error Generating Proces | Common Use | Typical Data Generating Process Shape |
---|---|---|
Log-Linear | Error accumulates additively, and then is exponentiated | Exponential |
Poisson | Count data | Exponential |
Binomial | Frequency, probability data | Logistic |
Gamma | Waiting times | Inverse or exponential |
\[ Y_i \sim LN(\mu, \sigma^2)\]
## Analysis of Deviance Table (Type II tests)
##
## Response: homerange
## LR Chisq Df Pr(>Chisq)
## mortality 105.68 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Error Generating Proces | Common Use | Typical Data Generating Process Shape |
---|---|---|
Log-Linear | Error accumulates additively, and then is exponentiated | Exponential |
Poisson | Count data | Exponential |
Binomial | Frequency, probability data | Logistic |
Gamma | Waiting times | Inverse or exponential |
\[Y_i \sim P(\lambda)\]
Error Generating Proces | Common Use | Typical Data Generating Process Shape |
---|---|---|
Log-Linear | Error accumulates additively, and then is exponentiated | Exponential |
Poisson | Count data | Exponential |
Binomial | Frequency, probability data | Logistic |
Gamma | Waiting times | Inverse or exponential |
\[ Y_i \sim B(prob, size) \]
\[\Large \boldsymbol{\eta_{i}} = \boldsymbol{\beta X_i} \]
\[\Large Logit(\hat{Y_i}) = \eta_{i}\] Logit Link Function
\[\Large Y_i \sim \mathcal{B}(\hat{Y_i}, size)\]
McElreath’s Statistical Rethinking
OR, with Success and Failures
LR Chisq | Df | Pr(>Chisq) | |
---|---|---|---|
Dose | 233.8357 | 1 | 0 |
And logit coefficients
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -1.4077690 | 0.1484785 | -9.481298 | 0 |
Dose | 0.0134684 | 0.0010464 | 12.870912 | 0 |
Error Generating Proces | Common Use | Typical Data Generating Process Shape |
---|---|---|
Log-Linear | Error accumulates additively, and then is exponentiated | Exponential |
Poisson | Count data | Exponential |
Binomial | Frequency, probability data | Logistic |
Gamma | Waiting times | Inverse or exponential |
Example from http://seananderson.ca/2014/04/08/gamma-glms/
\[Y_i \sim Gamma(shape, scale)\]
\[Y_i \sim Gamma(shape, scale)\]
For a fit value \(\hat{Y_i}\):
LR Chisq | Df | Pr(>Chisq) | |
---|---|---|---|
time_fishing | 93.38621 | 1 | 0 |
Estimate | Std. Error | t value | Pr(>|t|) | |
---|---|---|---|---|
(Intercept) | 0.5399 | 0.1752 | 3.0812 | 0.0027 |
time_fishing | 1.1304 | 0.1158 | 9.7637 | 0.0000 |